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Emergence of order in textured patterns

Gemunu H. Gunaratne,1,2 Anuradha Ratnaweera,2 and K. Tennekone2
1Department of Physics, The University of Houston, Houston, Texas 77204

2The Institute of Fundamental Studies, Kandy, Sri Lanka
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A characterization of textured patterns, referred to as the disorder functiond̄(b), is used to study properties
of patterns generated in the Swift-Hohenberg equation~SHE!. It is shown to be an intensive, configuration-
independent measure. The evolution of random initial states under the SHE exhibits two stages of relaxation.
The initial phase, where local striped domains emerge from a noisy background, is quantified by a power-law

decayd̄(b);t2(1/2)b. Beyond a sharp transition, a slower power-law decay ofd̄(b), which corresponds to the
coarsening of striped domains, is observed. The transition between the phases advances as the system is driven

further from the onset of patterns, and suitable scaling of time andd̄(b) leads to the collapse of distinct curves.

The decay ofd̄(b) during the initial phase remains unchanged when nonvariational terms are added to the
underlying equations, suggesting the possibility of observing it in experimental systems. In contrast, the rate of
relaxation during domain coarsening increases with the coefficient of the nonvariational term.
@S1063-651X~99!09405-2#

PACS number~s!: 05.70.Ln, 82.40.Ck, 47.54.1r
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I. INTRODUCTION

The study of spatio-temporal patterns has received c
siderable impetus from a series of elegant experiments
theoretical developments based on symmetry considerat
Recent experimental studies include those on reaction d
sion chemical systems@1#, convection in fluids@2# and gases
@3#, ferrofluids @4#, and vibrated layers of granular materi
@5#. These results have been supplemented with patterns
erated in~relatively! simple model systems@6–8#. The most
complete theoretical treatments of patterns rely on the st
of symmetries of the underlying system and those of
patterns@9#. Unfortunately, this analysis is restricted to pe
odic or quasiperiodic patterns. A theoretical analysis of m
complex states requires the identification of suitable ‘‘va
ables’’ to describe a given pattern. Examples of such v
ables include the structure factor@10#, the correlation length
@11–13#, and the density of topological defects@14#. In this
paper we study properties of another characterization,
ferred to as the ‘‘disorder function’’@15,16#.

The patterns studied are generated in physical syst
~and models! whose control parameters are uniform in spa
and time; thus, they result from spontaneous symme
breaking. The simplest class of nontrivial structures is p
odic. They are typically striped, square, triangular, or h
agonal patterns that form in perfect, extended arrays@6#. To
obtain periodic patterns, the initial state of the system and
the boundary conditions need to be carefully prepared
second class consists of periodic patterns whose ‘‘unit ce
have additional structure@17,18#. A field describing periodic
arrays can be expanded in a few plane waves.

The patterns described above contain a unit cell tha
repeated on a ‘‘Bravais lattice’’ to generate a plane-filli
structure. The qualitative description of the pattern involv
the characterization~in terms of symmetries! of the unit cell
and the generators of the Bravais lattice. For example,
unit cell of a honeycomb lattice isD6-symmetric, and the
PRE 591063-651X/99/59~5!/5058~7!/$15.00
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Bravais lattice is generated by two unit vectors 120° apa
Quasiperiodic patterns have also been observed u

suitable experimental conditions@19#. Their symmetries can
be observed in Fourier space. For example, the spectrum
quasicrystal is tenfold symmetric@20#. Quasiperiodic pat-
terns can be described using a few ‘‘principal’’ plane wav
along with their nonlinear couplings.

The bifurcations to and from a given periodic~or quasi-
periodic! state can be studied using the ‘‘Landau equation
which once again rely on the symmetries of the physi
system and the pattern@21#. The information used is that
since the pattern is generated by symmetry breaking, a
ond pattern obtained under the action of any symmetry of
physical systemhas identical features. The imposition of th
equivalence~supplemented by the elimination of ‘‘higher
order’’ terms! gives the normal form equations of the pa
tern. They contain information on aspects of dynamics of
pattern and details about its bifurcations@9#.

Patterns such as those of Figs. 1 and 2~which are gener-
ated in a model system! do not belong to the classes di
cussed above. These structures, referred to as ‘‘textured
‘‘natural’’ patterns@22#, are observed when the initial state
from which they evolve are not controlled. Similar structur
are seen in small aspect ratio systems when the bound
play a significant role in the creation of the pattern@6#.

There is no~nontrivial! global symmetry of textures; con
sequently, they cannot be characterized using symm
groups. Note also that a second realization of the experim
~e.g., starting from a different set of initial conditions! will
give a pattern that is vastly different in detail@such as Figs.
1~a! and 1~b!#. In spite of these differences, one can clea
recognize similarities between distinct patterns. For exam
the correlation length and the density of topological defe
of the two textures shown in Fig. 1 are similar. In contra
patterns generated under other external conditions~e.g., Fig.
2! have different characteristics. A theoretical treatment
textured patterns requires a ‘‘configuration independent’’
scription.
5058 ©1999 The American Physical Society
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PRE 59 5059EMERGENCE OF ORDER IN TEXTURED PATTERNS
In Sec. II, we introduce the disorder functiond̄(b) whose
definition was motivated in part by the argument leading
the derivation of Landau equations; for patterns generate
uniform, extended systems,d̄(b) is required to be invarian
under rigid motions of a labyrinthine pattern@15,16#. The
main results of the paper, which include properties of
disorder function and its application to provide a quantitat
description of the relaxation of the patterns from an initia
random state, are presented in Secs. III and IV. The un
lying spatio-temporal dynamics is given by the Swi
Hohenberg equation~SHE! and one of its variants. We firs
provide evidence to support the claim that the disorder fu
tion consists of intensive, configuration-independent va
ables. The use ofd̄(b) shows that pattern relaxation occu
in two distinct stages separated by a sharp transition. We
study changes in the relaxation profile when the system
driven further away from the onset of patterns. In Sec.
we discuss the effects of adding nonvariational terms to
SHE.

II. THE DISORDER FUNCTION

Textured patterns observed in experimental systems@1–5#
and those shown in Figs. 1 and 2 can be described by a s

FIG. 1. Two patterns generated by evolving random initial sta
via the Swift-Hohenberg equation for 1600 time units. The para
eters used wereD50.1, e50.2, n52, andk051. The initial states
consisted of white noise whose intensity varied between 0
1023. Periodic boundary conditions were imposed on the squ
domain of 2563256 lattice points, the length of whose sides a
(48p/k0).
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field v(x) which is smooth, except perhaps at the def
cores. However, unless the patterns are trivial~e.g., perfect
stripes, target patterns! the analytical form of the field is
unknown. Consequently, it is difficult to determine a set
‘‘configuration-independent’’ characteristics of structur
generated under similar conditions. We impose instea
weaker requirement, that the characterizations remain inv
ant under the action of the symmetries of the underly
physical system; i.e., translations, rotations, and reflecti
@15#.

Labyrinthine patterns are locally striped; in a suitab
neighborhood v(x);sin(k–x), where the modulusk0
([uku) of the wave vector does not vary significantly ov
the pattern. Structures generated in experiments and m
systems include higher harmonics due to the presenc
nonlinearities in the underlying system; they only contribu
to the shape of the cross section of stripes. In order to use
simplest characterization of textures, we eliminate these
monics by the use of a suitable window function in Four
space. For experimental patterns~which do not have periodic
boundary conditions! this is a nontrivial task, and a metho
to implement it is described in Ref.@24#.

These considerations lead to the definition of a family
measures, referred to as the disorder function@16#,

s
-

d
re

FIG. 2. Two patterns generated by evolving a random ini
state via the Swift-Hohenberg equation for 2400 time units. T
parameters used for the integration wereD50.01, e50.4, n52,
and k051/3. The initial states consisted of white noise whose
tensity varied between61022. The length of each side of the
square is (48p/k0).
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d~b!5~22b!
E dau~n1k0

2!v~x!ub

k0
2b^uv~x!u&b , ~1!

where ^uv(x)u& denotes the mean ofuv(x)u, and d(b) has
been normalized so that the ‘‘intensive variables’’d̄(b)
5d(b)/*da are scale invariant. The momentb lies between
0 and 2. Local deviations of the patterns from stripes~due to
curvature of the contour lines@15#! contribute to d(b)
through the Laplacian, while variations of the width of th
stripes contribute via the choice of a ‘‘global’’k0.

d̄(b) depends on the choice of the wave numberk0 of the
‘‘basic’’ stripes. Analysis of striped patternsust(x)
5A sin(k–x) and target patternsut(x)5A cos(kr) shows that
d̄(1) is minimized whenk05k5uku. Studies of textured pat
terns from model equations indicate~see Fig. 3! the presence
of a unique minimum ofd̄(1). We use theminimization of
d̄(1) as the criterion for the choice of the wave numberk0 in
Eq. ~1!. For patterns generated using the Swift-Hohenb
equation@6#, k0 is very close to the wave number obtain
by minimizing the ‘‘energy’’ @25#. We also find that our
estimation ofk0 is far more robust~i.e., smaller variation
between distinct patterns! than that evaluated from the powe
spectrum. This is presumably because wavelength variat
and curvature of contour lines at each location of the pat
contribute to the computation ofd̄(b).

The variation ink over the pattern~traditionally defined to
be the half-width of the structure factor@27#! can be esti-
mated using the variation ofd̄(1) with the wave numberk
~see Fig. 3!. In the remainder of the paper we defineDk to be
the distance betweenk values for whichd̄(1) is twice the
minimum value@26#. Analysis of textures shows thatDk is a
configuration-independent, intensive variable.

Observe that our choice ofk0 is arbitrary in one sense; w
could have chosen to minimized̄(b) for any fixed b to
determinek0. However, the observed variations ink0 are
insignificant. Alternatively, we could have evaluatedeach

d̄(b) by minimizing it with respect tok. We choose not to
implement this scheme because of the need to estimate

FIG. 3. The behavior ofd̄(1) as a function of the wave numbe
k ~in arbitrary units! for a labyrinthine pattern.k0 is estimated to be
the ~unique! minimum of the curve. The widthDk is defined to be

the distance between thek values at whichd̄(1) reaches twice its
minimum.
g
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one free parameter~i.e., the wave number! for a given pat-
tern.

For a perfect set of stripes the functiond̄(b)50. A do-
main wall contains curvature of the contour lines and var
tions of the stripe width; consequently it has nonzero dis
der. d(b) for a single domain wall is a monotonicall
increasing function of the angleu between the stripes of th
two domains@28#. Thusd(b) provides information absent in
characterizations such as the correlation length.

The calculation of the disorder function from~typically
noisy! grid values of the underlying field is described in Re
@16#. It relies on a method to approximate a continuous fu
tion from values given on a grid referred to as the method
‘‘distributed approximating functionals’’~DAFs! @23#.

III. PATTERNS GENERATED USING
THE SWIFT-HOHENBERG EQUATION

The patterns analyzed in the paper are obtained from
riodic fields u(x,t) generated by integrating random initia
states through a modified Swift-Hohenberg equation~SHE!
@29,6#,

] tu5D@e2~k0
21n !2#u2gu32n~¹u!2. ~2!

FIG. 4. The curvesd̄(b) for patterns generated at two differen
sets of control parameters. The lower bunch consists of curves
four patterns at the first set of control parameters~Fig. 1! while the
upper bunch consists of those for a second set of control param
~Fig. 2!. ~b! shows the same plots with a logarithmic vertical sca
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PRE 59 5061EMERGENCE OF ORDER IN TEXTURED PATTERNS
The parametersD, k0, andg can be eliminated through sui
able rescaling oft, x, and u, respectively.e measures the
distance from the onset of patterns. The results for the va
tional case (n50) are presented in this section and those
the nonvariational case (nÞ0) are given in the next.

The initial fields for the integration were random numbe
in a predetermined range. The time evolution is implemen
using the alternating direction implicit algorithm@31#. Each
nonlinear termN@u(x,t)# is expanded to first order indu
5u(x,t1dt)2u(x,t), thus linearizing the equations i
u(x,t1dt). Updating the field involves the inversion of
pentadiagonal matrix. The typical time step used for the
tegration,Dt;0.1, was chosen so that the higher-order ter
in du are insignificant. We have confirmed the robustness
the integration by comparing~in a few cases! the results with
those done for a smaller time step (Dt;0.001).

A. Properties of the disorder function

Analysis of patterns generated in model systems@16,30#
and experimental systems@15# shows that the functiond̄(b)
is configuration independent and differentiates patterns w
different visual characteristics~see Fig. 4!. The disorder
function quantifies the characteristics of a labyrinthine p
tern using the local curvature of the contour lines and
wavelength variations, which typically increase with the~vi-
sual! disorder of a texture. Thus,d̄(b) is able to quantify
~Fig. 4! the observation that patterns of Fig. 2 are more d
ordered that those of Fig. 1.

Next, we provide evidence to substantiate the claim t
d̄(b) are intensive variables for labyrinthine patterns such
those shown in Figs. 1 and 2@32#. This is done by comparing
values ofd̄(b) for patterns~with periodic boundary condi-
tions! of several sizes. The sizes of the domains chosen
36p336p, 36p372p, 72p372p, and 144p3144p, and

FIG. 5. The values ofd̄(0.5), d̄(1.0), andd̄(1.9) for periodic
patterns generated in domains of different sizes. The areas o
domains are 36p336p, 36p372p, 72p372p, and 144p
3144p. In each case random initial states are evolved for 80
time units under the SHE with control parameter given in Fig.

The results indicate thatd̄(b) are intensive variables for labyrin
thine patterns.
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each pattern is generated by integrating a random initial s
~with amplitude between61022) for a timeT58000 under
the SHE. The results, shown in Fig. 5, give the mean of
patterns for each domain size~except the largest where onl
five patterns were used!. The results indicate thatd̄(0.5),
d̄(1.0), and d̄(1.9) are intensive variables, and the corr
spondingd(b) are extensive variables.

B. Relaxation of patterns

The characterization of textures usingd̄(b) finds one use-
ful application in the study of the relaxation from an initial
random state. Figure 6 shows several snapshots of a rela
pattern. During an initial period (t,T0;800) the local do-
mains emerge out of the random background and the m
intensity^uu(x,t)u& nearly reaches its final value. The subs
quent evolution due to domain coarsening is very slo
These qualitative features are repeated in multiple runs un
the same control parameters.

Figure 7 shows the behavior ofDk, d̄(0.5), d̄(1.0), and
d̄(1.9) for the evolution shown in Fig. 6. The curves rema
identical ~except for small statistical fluctuations! for differ-

he

0
.

FIG. 6. Several snapshots@with time units defined in Eq.~2!# of
the relaxation of a random initial state whose intensity is betw
61022 under the SHE withD50.01, e50.4, n50, andk051/3.
An initial phase (T,800) when the local striped patterns are bei
formed is followed by domain coarsening.
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FIG. 7. The behavior of~a! Dk, ~b! d̄(0.5), ~c! d̄(1), and~d! d̄(1.9) during the evolution shown in Fig. 6, witht given in units defined

through Eq.~2!. During the initial phased̄(b) decays~approximately! like t2(1/2)b. During the second phase the scaling is nontrivial; e

d̄(0.5);t20.09, d̄(1.0);t20.15, and d̄(1.9);t20.19. The transition between the two phases occurs aroundt5800.
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ent realizations of the experiment; i.e., the disorder funct
captures configuration-independent aspects of the organ
tion of patterns. The relaxation clearly consists of two stag

with a sharp transition ind̄(b) at t5T0 @10,12#.

During the initial phase, the time evolution ofd̄(1)
changes smoothly from a logarithmic decay to a power

d̄(1);t2g1, whereg1'0.5. Correspondingt21/2 decay has
been observed in the width of the structure factor@10#. The
scaling is ‘‘trivial’’ in the sense that for other ‘‘moments’

d̄(b);t2(1/2)b @33#. The decay ofd̄(b) is consistent with
theL;t1/2 growth of domains in nonconserved systems@34#.

The second phase of the relaxation~due to domain coars
ening! exhibits a more complex behavior. The momen
d̄(0.5), d̄(1), and d̄(1.9) behave approximately ast20.09,
t20.15, and t20.20, respectively, indicating the presence
‘‘nontrivial’’ scaling @13#. The slower decay ofd̄(1.9) @com-
pared tod̄(1)b] suggests that changes in the density of d
fects are slower than the reduction of curvature of the c
tour lines@10#.

C. Changes in the relaxation withe

Figure 8 shows the behavior ofd̄(1) during the relaxation
of random initial states under the SHE for several values
e, all other parameters being fixed. The initial decay ofd̄(1)
and the rate of decay during the second phase are seen
independent ofe. Furthermore, the transition between t
n
a-

s,

s

-
-

f

be

FIG. 8. The evolution ofd̄(1) for patterns generated by inte
grating random initial states under the SHE for several values oe.
Each curve is an average of five runs, and time in measured in u
described in Fig. 7. For clarity, the standard deviations are sho

only for one parameter value. For distincte, d̄(1) exhibits identical
behavior during initial growth of domains, and decays at the sa

rate during the coarsening phase. The other momentsd̄(b) exhibit
similar behavior.
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two phases advances with increasinge. Similar results are
observed for all values of the momentsb.

Suitable scaling of variables, includingt→et, can be used
to eliminatee from the SHE. Hence we expect that the r
scalingt→et and d̄(1)→e21/2d̄(1) will lead to collapse of
the curves shown in Fig. 8. This is indeed the case as s
from the scaling function~Fig. 9!.

IV. RELAXATION IN NONVARIATIONAL SYSTEMS

In this section we discuss properties ofd̄(b) when the
spatio-temporal dynamics is nonvariational. The absenc
an underlying ‘‘energy’’ of the dynamics suggests a fas
relaxation, since the system cannot be constrained by ‘‘m
stable states’’ during the evolution. The behavior of the d
order function confirms this expectation.

Figure 10 shows the behavior ofd̄(1) for the organization
of a random field under a nonvariational SHE~i.e., nÞ0).
The decay ofd̄(1) remains the same~as the analogous varia
tional dynamics! during the initial relaxation~Fig. 7! and
becomes faster during the coarsening phase. As the co
cientn of the ‘‘nonvariational term’’ in Eq.~2! increases~the
value of the remaining coefficients remaining the same!, so

FIG. 9. The scaling function for the relaxation obtained by t

rescalingt85te andd̄85 d̄e21/2. The data correspond toe values of
0.01, 0.05, 0.1, 0.4, and 0.8.

FIG. 10. The behavior ofd̄(1) for the evolution of a random
initial state under the nonvariational modification of the SHE. T
parameters of the SHE are the same as given in Fig. 6 excep
n52.0. The initial decay is identical to the variational case wh

the coarsening phase exhibits a faster decay ofd̄(1). Thetime t is
measured in units described in Fig. 7.
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en
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does the relaxation rate during the coarsening phase~Fig.
11!.

The wave number@obtained by minimizingd̄(1) overk0]
relaxes to a value (k050.61) that is larger than the corre
sponding one for the variational case (k050.59). Such a
deviation was observed earlier in Ref.@12#, where it was
suggested thatk0 ~for the nonvariational case! corresponds to
the zero-climb velocity of isolated dislocation defects.

V. DISCUSSION

We have used the disorder functiond̄(b) to characterize
properties of textured patterns and their relaxation from
tially random states. The disorder function was defined
requiring its invariance under rigid motions of a single te
ture. It was found to be identical for multiple patterns ge
erated under similar external conditions; i.e.,d̄(b) is con-
figuration independent. We provided evidence to confi
that the moments are intensive variables. In addition,
disorder function can differentiate between patterns with d
tinct characteristics.

The evolution of initially random states under the Swi
Hohenberg equation is conveniently described usingd̄(b).
The relaxation consists of two distinct stages separated
sharp transition. During the initial phase, local striped d
mains emerge out of the noisy background and their am
tudes saturate close to their final value. This behavior is
scribed by a logarithmic decay followed by a power-la
decay of the disorderd̄(1);t21/2. The scaling is ‘‘trivial’’ in
the sense that the decay of the remaining moments sati
d̄(b);d̄(1)b. The second phase of the relaxation cor
sponds to domain coarsening and is a much slower proc
The scaling during this phase is nontrivial.

As the system is driven further from the onset of patte
~as measured by the parametere), the duration of the initial
phase is reduced. However, the rates of decay of the diso
function for the two phases remain unchanged and resca
of time by e and of d̄(b) by e2(1/2)b leads to a scaling
collapse.

The addition of nonvariational terms to the spati
temporal dynamics leads to several interesting observati
The decay of disorder during the initial phase is unchang

for

FIG. 11. The behavior ofd̄(1) for several valuesn. Observe
that the decay during the growth phase remains the same, while
decay during the coarsening phase increases withn.
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and appears to be a model-independent feature. Thus,
may expect to observe it during relaxation of patterns
experimental systems. The expectation of a faster relaxa
in nonvariational systems~due to the absence of ‘‘potentia
minima’’! is seen only during domain coarsening. This ra
of relaxation is system dependent and increases as the
ficient of the nonvariational term.

There is very little theoretical understanding of the o
served behavior of the disorder function. The decay ofd̄(b)
during the initial phase of pattern relaxation is reminiscen
analogous behavior in theXY model@35,36#, and appears to
ne
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f

correspond to theL;t1/2 growth of domains in noncon
served systems@34#.
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