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Emergence of order in textured patterns

Gemunu H. Gunaratn? Anuradha Ratnaweefaand K. Tennekorfe
1Department of Physics, The University of Houston, Houston, Texas 77204
°The Institute of Fundamental Studies, Kandy, Sri Lanka
(Received 28 August 1998

A characterization of textured patterns, referred to as the disorder fur@_ﬁ(tlb)) is used to study properties
of patterns generated in the Swift-Hohenberg equaiE). It is shown to be an intensive, configuration-
independent measure. The evolution of random initial states under the SHE exhibits two stages of relaxation.
The initial phase, where local striped domains emerge from a noisy background, is quantified by a power-law
decays(B)~t~ (Y25 Beyond a sharp transition, a slower power-law decag(@f), which corresponds to the
coarsening of striped domains, is observed. The transition between the phases advances as the system is driven
further from the onset of patterns, and suitable scaling of time?&aﬁd leads to the collapse of distinct curves.
The decay of8(8) during the initial phase remains unchanged when nonvariational terms are added to the
underlying equations, suggesting the possibility of observing it in experimental systems. In contrast, the rate of
relaxation during domain coarsening increases with the coefficient of the nonvariational term.
[S1063-651%99)09405-3

PACS numbgs): 05.70.Ln, 82.40.Ck, 47.54r

[. INTRODUCTION Bravais lattice is generated by two unit vectors 120° apart.
Quasiperiodic patterns have also been observed under
The study of spatio-temporal patterns has received corsuitable experimental conditio49]. Their symmetries can
siderable impetus from a series of elegant experiments anfée observed in Fourier space. For example, the spectrum of a
theoretical developments based on symmetry consideration@uasicrystal is tenfold symmetri20]. Quasiperiodic pat-
Recent experimental studies include those on reaction diffulerns can be d_escnb_ed using a _few principal” plane waves
sion chemical systeni4], convection in fluid§2] and gases along W't.h the'f nonlinear couplmgs: - .
[3], ferrofluids[4], and vibrated layers of granular material Th:;. blfurcat|0nsbto an; f(rjom_a g|;]/er‘1‘ per:joc{mr quasl- .,
[5]. These results have been supplemented with patterns ge%erlo 19 state can be studied using the "Landau equations,

hich i I h [ f the physical
erated in(relatively) simple model system$—8]. The most which once again rely on the symmetries of the physica

; ?/stem and the pattefi2l]. The information used is that,
complete theoretical treatments of patterns rely on the study; o the pattern is generated by symmetry breaking, a sec-

of symmetries of the underlying system and those of thgnq pattern obtained under the action of any symmetry of the
patterng9]. Unfortunately, this analysis is restricted to peri- physical systerhas identical features. The imposition of this
odic or quasiperiodic patterns. A theoretical analysis of morequivalence(supplemented by the elimination of “higher-
Complex Sstates requires the identification of suitable “Vari-order” terms gives the normal form equations of the pat_
ables” to describe a given pattern. Examples of such varitern. They contain information on aspects of dynamics of the
ables include the structure factdrO], the correlation length  pattern and details about its bifurcatiois.

[11-13, and the density of topological defedts4]. In this Patterns such as those of Figs. 1 an@gvlich are gener-
paper we study properties of another characterization, reated in a model systendo not belong to the classes dis-
ferred to as the “disorder function[15,16. cussed above. These structures, referred to as “textured” or

The patterns studied are generated in physical system$atural” patterns[22], are observed when the initial states
(and modelswhose control parameters are uniform in spacefrom which they evolve are not controlled. Similar structures
and time; thus, they result from spontaneous symmetrare seen in small aspect ratio systems when the boundaries
breaking. The simplest class of nontrivial structures is periplay a significant role in the creation of the patt¢én.
odic. They are typically striped, square, triangular, or hex- There is na(nontrivial) global symmetry of textures; con-
agonal patterns that form in perfect, extended arféysTo  sequently, they cannot be characterized using symmetry
obtain periodic patterns, the initial state of the system and/ogroups. Note also that a second realization of the experiment
the boundary conditions need to be carefully prepared. Ae.g., starting from a different set of initial conditionaill
second class consists of periodic patterns whose “unit cells’give a pattern that is vastly different in detfsiuch as Figs.
have additional structurle7,18. A field describing periodic  1(a) and Xb)]. In spite of these differences, one can clearly
arrays can be expanded in a few plane waves. recognize similarities between distinct patterns. For example,

The patterns described above contain a unit cell that ishe correlation length and the density of topological defects
repeated on a “Bravais lattice” to generate a plane-fillingof the two textures shown in Fig. 1 are similar. In contrast,
structure. The qualitative description of the pattern involvegatterns generated under other external conditierts, Fig.
the characterizatiofin terms of symmetrigsof the unit cell  2) have different characteristics. A theoretical treatment of
and the generators of the Bravais lattice. For example, theextured patterns requires a “‘configuration independent” de-
unit cell of a honeycomb lattice iDg-symmetric, and the scription.
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FIG. 1. Two patterns generated by evolving random initial states FIG- 2. Two patterns generated by evolving a random initial
via the Swift-Hohenberg equation for 1600 time units. The param-State via the Swift-Hohenberg equation for 2400 time units. The
eters used werB=0.1, e=0.2, v=2, andk,= 1. The initial states Parameters used for the integration wére=0.01, e=0.4, v=2,
consisted of white noise whose intensity varied between 0 an@nd ko=1/3. The initial states consisted of white noise whose in-
1073, Periodic boundary conditions were imposed on the squardensity varied betweent1072. The length of each side of the
domain of 256¢ 256 lattice points, the length of whose sides are Square is (48/ko).

(48m/ky).

field v(x) which is smooth, except perhaps at the defect

In Sec. I, we introduce the disorder functig(vg’) whose H | th tt e fact
definition was motivated in part by the argument leading toCOreS. HOWEVer, uniess the paterns are ri@ag., perfec

the derivation of Landau equations; for patterns generated ift"iP€S. target patternshe analytical form of the field is

. — . . . . unknown. Consequently, it is difficult to determine a set of
uniform, extended systems(/3) is required to be invariant “configuration-independent” characteristics of structures
under rigid motions of a labyrinthine pattefti5,16. The 9 P

eqenerated under similar conditions. We impose instead a

disorder function and its application to provide a quan'[i'tative\"’eaker requwement, that the character_lzatlons remain invari-
description of the relaxation of the patterns from an initially 21t under the action of the symmetries of the underlying
random state, are presented in Secs. Il and IV. The undeRhysical system; i.e., translations, rotations, and reflections
lying spatio-temporal dynamics is given by the Swift- [15]. o ) ) .
Hohenberg equatiofSHE) and one of its variants. We first _Labyrlnthlne patterns are locally striped; in a suitable
provide evidence to support the claim that the disorder funcP€ighborhood v(x)~sink-x), where the modulusk,

tion consists of intensive, configuration-independent vari{=|K|) of the wave vector does not vary significantly over

ables. The use o?( 5) shows that pattern relaxation occurs the pattern. Structures generated in experiments and model

in two distinct stages separated by a sharp transition. We alssc}/st_ems _|r_10Iu_de higher haTmO”'CS du_e to the presence of
-nonlinearities in the underlying system; they only contribute

study changes in the relaxation profile when the system i . .

X o the shape of the cross section of stripes. In order to use the
driven further away from the onset of patterns. In Sec. IV, . T o

: . L simplest characterization of textures, we eliminate these har-

we discuss the effects of adding nonvariational terms to theé ' ™ . ; L .
SHE monics by the use of a suitable vymdow function in Fou_ner
' space. For experimental pattemeich do not have periodic
boundary conditionsthis is a nontrivial task, and a method
to implement it is described in Ref24].
Textured patterns observed in experimental sys{dm$| These considerations lead to the definition of a family of

and those shown in Figs. 1 and 2 can be described by a scalsreasures, referred to as the disorder funcfits,

II. THE DISORDER FUNCTION
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FIG. 3. The behavior 05(1) as a function of the wave number
k (in arbitrary unitg for a labyrinthine patterrk, is estimated to be
the (unique minimum of the curve. The widthAk is defined to be

the distance between thevalues at whickg(l) reaches twice its
minimum.

[ dala+ ool
D

o(B)=(2—p) 1)

where(Jv(x)|) denotes the mean db(x)|, and 8(8) has
been normalized so that the “intensive variables(3)

= §(B)/fda are scale invariant. The momegitlies between

0 and 2. Local deviations of the patterns from strifase to
curvature of the contour line§l5]) contribute to 5(B)
through the Laplacian, while variations of the width of the
stripes contribute via the choice of a “globaky.

3(,8) depends on the choice of the wave numkgof the
“basic” stripes. Analysis of striped patternsug(x)
=Asin(-x) and target patterns;(x) = A coskr) shows that
'5(1) is minimized wherk,=k=|k|. Studies of textured pat-
terns from model equations indicateee Fig. 3the presence
of a unique minimum 05(1). We use thaninimization of
5(1) as the criterion for the choice of the wave numkgm

GUNARATNE, RATNAWEERA, AND TENNEKONE

PRE 59

06 - T T

05

04}

03

5(B)

02

01t

00
05

15

20

(b)

01}

log 10 3(B)

001¢

0 1
B

FIG. 4. The curves;_S(,B) for patterns generated at two different
sets of control parameters. The lower bunch consists of curves for
four patterns at the first set of control parametgiig. 1) while the

upper bunch consists of those for a second set of control parameters

(Fig. 2. (b) shows the same plots with a logarithmic vertical scale.

one free parametdi.e., the wave numbgrfor a given pat-
tern.

For a perfect set of stripes the functiaﬁﬁ)zo. A do-

Eq. (1). For patterns generated using the Swift-Hohenberdnain wall contains curvature of the contour lines and varia-
equation[6], k, is very close to the wave number obtained tions of the stripe width; consequently it has nonzero disor-

by minimizing the “energy” [25]. We also find that our
estimation ofk, is far more robusfi.e., smaller variation

der. §(B) for a single domain wall is a monotonically
increasing function of the angke between the stripes of the

between distinct patterpghan that evaluated from the power two domaing28]. Thus(8) provides information absent in
spectrum. This is presumably because wavelength variatiorflaracterizations such as the correlation length.
and curvature of contour lines at each location of the pattern The calculation of the disorder function froftypically

contribute to the computation &f(g).

The variation ink over the patteritraditionally defined to
be the half-width of the structure factp27]) can be esti-
mated using the variation a¥(1) with the wave numbek
(see Fig. 3 In the remainder of the paper we defiik to be
the distance betweek values for whiché(1) is twice the
minimum valug[26]. Analysis of textures shows thak is a
configuration-independent, intensive variable.

Observe that our choice &f is arbitrary in one sense; we
could have chosen to minimizé(B) for any fixed B8 to
determinek,. However, the observed variations kg are
insignificant. Alternatively, we could have evaluatedch

5(,8) by minimizing it with respect tk. We choose not to

implement this scheme because of the need to estimate only

noisy) grid values of the underlying field is described in Ref.
[16]. It relies on a method to approximate a continuous func-
tion from values given on a grid referred to as the method of
“distributed approximating functionals(DAFs) [23].

Ill. PATTERNS GENERATED USING
THE SWIFT-HOHENBERG EQUATION

The patterns analyzed in the paper are obtained from pe-
riodic fields u(x,t) generated by integrating random initial
states through a modified Swift-Hohenberg equatiBRE)
[29,6],

du=D[e—(ki+ A)?Ju— yud—v(Vu)2. 2
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FIG. 5. The values 0%(0.5), §(1.0), and5(1.9) for periodic
patterns generated in domains of different sizes. The areas of the
domains are 36X36mw, 36mX72mw, 72wX72w, and 144r
X 144qr. In each case random initial states are evolved for 8000
time units under the SHE with control parameter given in Fig. 2.
The results indicate thad(g8) are intensive variables for labyrin-
thine patterns.

The parameterB, ko, andy can be eliminated through suit- ﬁ
able rescaling ot, x, and u, respectively.e measures the 1P
distance from the onset of patterns. The results for the varia-
tional case ¢=0) are presented in this section and those for
the nonvariational casev¢0) are given in the next.

The initial fields for the integration were random numbers
in a predetermined range. The time evolution is implemented

using the alternating dire_ction implicit algqrithfﬁl]. E_ach FIG. 6. Several snapshdiwith time units defined in Eq2)] of
nonlinear termN[u(x,1)] is e_xpan.d(.ad to first order B . the relaxation of a random initial state whose intensity is between
=u(x,t+dt)—u(xt), thus linearizing the equations in ., 142 der the SHE wittD=0.01, e=0.4, »=0, andky=1/3.
U(X'H'_&)' Updatlng the f'eld_'nvo,lves the inversion of :_i An initial phase T<800) when the local striped patterns are being
pentadiagonal matrix. The typical time step used for the iNggrmed is followed by domain coarsening.

tegration At~0.1, was chosen so that the higher-order terms

in du are insignificant. We have confirmed the robustness o
the integration by comparingn a few casesthe results with
those done for a smaller time stefit(~0.001).

T=6,400 T=25,600

Each pattern is generated by integrating a random initial state
(with amplitude betweerr 10~2) for a time T=28000 under

the SHE. The results, shown in Fig. 5, give the mean of 10
patterns for each domain sizexcept the largest where only

A. Properties of the disorder function five patterns were us@dThe results indicate thaT(O.S),

5(1.0), and 5(1.9) are intensive variables, and the corre-

Analysis of patterns generated in model systed; 30 spondingd(8) are extensive variables.

and experimental systemi$5] shows that the functiod(3)
is configuration independent and differentiates patterns with
different visual characteristicésee Fig. 4 The disorder
function quantifies the characteristics of a labyrinthine pat- The characterization of textures usiEgB) finds one use-
tern using the local curvature of the contour lines and theuy| application in the study of the relaxation from an initially
wavelength variations, which typically increase with the random state. Figure 6 shows several snapshots of a relaxing
sua) disorder of a texture. Thusj(B) is able to quantify pattern. During an initial periodt& T,~800) the local do-
(Fig. 4 the observation that patterns of Fig. 2 are more disinains emerge out of the random background and the mean
ordered that those of Fig. 1. intensity(|u(x,t)|) nearly reaches its final value. The subse-
Next, we provide evidence to substantiate the claim thatjuent evolution due to domain coarsening is very slow.
5(B) are intensive variables for labyrinthine patterns such ad hese qualitative features are repeated in multiple runs under
those shown in Figs. 1 and[32]. This is done by comparing the same control parameters. . .
values of5(B) for patterns(with periodic boundary condi- _ Figure 7 shows the behavior &fk, §(0.5), 5(1.0), and
tions) of several sizes. The sizes of the domains chosen ar&(1.9) for the evolution shown in Fig. 6. The curves remain
36w X 36w, 36w X 72w, 720X 727w, and 144rX 1444, and  identical (except for small statistical fluctuationfor differ-

B. Relaxation of patterns
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FIG. 7. The behavior ofa) Ak, (b) 8(0.5), (c) 5(1), and(d) 8(1.9) during the evolution shown in Fig. 6, withgiven in units defined
through Eq.(2). During the initial phaseS(8) decays(approximately like t =25, During the second phase the scaling is nontrivial; e.g.,
8(0.5)~t7%0% 5(1.0)~t~%15 and 5(1.9)~t~ %1% The transition between the two phases occurs aroe&DO.

ent realizations of the experiment; i.e., the disorder function
captures configuration-independent aspects of the organiza- T AL T
tion of patterns. The relaxation clearly consists of two stages, 04}
with a sharp transition id(B) att=T, [10,12.

During the initial phase, the time evolution af(1)
changes smoothly from a logarithmic decay to a power law

5(1)~t~ "1, where y;~0.5. Corresponding™*? decay has
been observed in the width of the structure fa¢t®]. The
scaling is “trivial” in the sense that for other “moments”
8(B)~t~ (Y28 [33]. The decay ofs(B) is consistent with
the L ~t'2 growth of domains in nonconserved systdi®4).
The second phase of the relaxatiglue to domain coars-
ening exhibits a more complex behavior. The moments
5(0.5), 8(1), and 8(1.9) behave approximately as %9,

5(1.0)

02}

0.1

0.08 |

0.06 |

t~%%% and t~%% respectively, indicating the presence of
“nontrivial” scaling [13]. The slower decay 0#(1.9) [com-

pared tog(l)ﬁ] suggests that changes in the density of de-
fects are slower than the reduction of curvature of the con-
tour lines[10].

0.04 al N IR A | " s a2 gl
100 1,000

Time

FIG. 8. The evolution of6(1) for patterns generated by inte-
grating random initial states under the SHE for several values of
Each curve is an average of five runs, and time in measured in units

Figure 8 shows the behavior 6f1) during the relaxation described in Fig. 7. For clarity, the standard deviations are shown
of random initial states under the SHE for several values ofly for one parameter value. For distingta(1) exhibits identical

e, all other parameters being fixed. The initial decaysf) behavior during initial growth of domains, and decays at the same

and the rate of decay during the second phase are seen to g during the coarsening phase. The other mom&(s3 exhibit
independent ofe. Furthermore, the transition between the similar behavior.

C. Changes in the relaxation withe
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FIG. 9. The scaling function for the relaxation obtained by the

rescalingt’ =te and ' = 5“2 The data correspond tovalues of
0.01, 0.05, 0.1, 0.4, and 0.8.

FIG. 11. The behavior 05(1) for several values. Observe
that the decay during the growth phase remains the same, while the
decay during the coarsening phase increases with

two phases advances with increasiagSimilar results are d : . . :
oes the relaxation rate during the coarsenin B
observed for all values of the momengs ) g g priga

Suitable scaling of variables, includitg- et, can be used
to eliminatee from the SHE. Hence we expect that the re-
scalingt— et and 8(1)— e~ 25(1) will lead to collapse of
the curves shown in Fig. 8. This is indeed the case as se
from the scaling functioriFig. 9).

The wave numbefrobtained by minimizings(1) overkg]
relaxes to a valuekp=0.61) that is larger than the corre-
sponding one for the variational casky€0.59). Such a

viation was observed earlier in R¢lL2], where it was
suggested thad¢(, (for the nonvariational cageorresponds to

the zero-climb velocity of isolated dislocation defects.
IV. RELAXATION IN NONVARIATIONAL SYSTEMS

In this section we discuss properties &f3) when the
spatio-temporal dynamics is nonvariational. The absence of _
an underlying “energy” of the dynamics suggests a faster We have used the disorder functieB) to characterize
relaxation, since the system cannot be constrained by “metgsroperties of textured patterns and their relaxation from ini-
stable states” during the evolution. The behavior of the disdially random states. The disorder function was defined by
order function confirms this expectation. requiring its invariance under rigid motions of a single tex-

Figure 10 shows the behavior 6f1) for the organization ~ture. It was found to be identical for multiple patterns gen-
of a random field under a nonvariational SHiEe., v#0).  erated under similar external conditions; i.6() is con-

The decay 05(1) remains the sam@s the analogous varia- figuration independent. _We providec_j evidence to ponfirm
tional dynamics during the initial relaxation(Fig. 7) and that the mom_ents are mtens_lve variables. In add|t|(_)n, t_he
becomes faster during the coarsening phase. As the Coefg_lsorder functlpn_ can differentiate between patterns with dis-
cientw of the “nonvariational term” in Eq(2) increasegthe  tinct characteristics. ,
value of the remaining coefficients remaining the sprse The evolution of initially random states under the Swift-
Hohenberg equation is conveniently described usig).
The relaxation consists of two distinct stages separated by a
\\. sharp transition. During the initial phase, local striped do-
mains emerge out of the noisy background and their ampli-
tudes saturate close to their final value. This behavior is de-
scribed by a logarithmic decay followed by a power-law
N decay of the disorde$(1)~t~ Y2 The scaling is “trivial” in
] the sense that the decay of the remaining moments satisfies
\\ 8(B)~ 8(1)P. The second phase of the relaxation corre-
sponds to domain coarsening and is a much slower process.
The scaling during this phase is nontrivial.

As the system is driven further from the onset of patterns
(as measured by the parameggr the duration of the initial
phase is reduced. However, the rates of decay of the disorder

FIG. 10. The behavior 0B(1) for the evolution of a random function for the two pﬂases remain unchanged and rescaling
initial state under the nonvariational modification of the SHE. Theof time by e and of §(8) by ¢ (Y# |eads to a scaling
parameters of the SHE are the same as given in Fig. 6 except faollapse.
v=2.0. The initial decay is identical to the variational case while  The addition of nonvariational terms to the spatio-
the coarsening phase exhibits a faster decag(af). Thetimetis  temporal dynamics leads to several interesting observations.
measured in units described in Fig. 7. The decay of disorder during the initial phase is unchanged,

V. DISCUSSION
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and appears to be a model-independent feature. Thus, owerrespond to the.~tY? growth of domains in noncon-
may expect to observe it during relaxation of patterns inserved systemg34].

experimental systems. The expectation of a faster relaxation

in nonvariational system&ue to the absence of “potential

minima”) is seen only during domain coarsening. This rate ACKNOWLEDGMENTS
of relaxation is system dependent and increases as the coef-
ficient of the nonvariational term. We would like to thank K. Bassler, D. K. Hoffman, R. E.

There is very little theoretical understanding of the ob-jones, D. J. Kouri, and H. L. Swinney for many stimulating
served behavior of the disorder function. The decag(@#) discussions. This work was partially funded by the U.S. Of-
during the initial phase of pattern relaxation is reminiscent office of Naval Research and the Energy Laboratory at the
analogous behavior in théY model[35,36], and appears to University of Houston.

[1] Q. Ouyang and H. L. Swinney, Natuféondon 352 610 [18] S. L. Judd and M. Silbefunpublishedl

(199)). [19] W. S. Edwards and S. Fauve, Phys. Re¥E=R788(1993.
[2] M. S. Heutmaker and J. P. Gollub, Phys. Rev.35 242 [20] D. Levine and P. J. Steinhart, Phys. Rev. LB88.2477(1984).
(1987). [21] L. Landau and E. LifshitzFluid Mechanics(Pergamon Press,
[3] E. Bodenschatz, J. R. de Bruyn, G. Ahlers, and D. S. Cannel, ~ Oxford, 1959.
Phys. Rev. Lett67, 3078(1991). [22] M. C. Cross, Phys. Rev. &5, 1065(1982.
[4] R. E. RosensweigFerrohydrodynamicgCambridge Univer- [23] D. K. Hoffman, M. Arnold, and D. J. Kouri, J. Phys. Chem.
sity Press, Cambridge, 1985 96, 6539(1992.
[5] F. Melo, P. Umbanhower, and H. L. Swinney, Phys. Rev. Lett.[24] D. K. Hoffman, G. H. Gunaratne, D. Z. Zhang, and D. J. Kouri
72, 172(1993. (unpublished
[6] M. C. Cross and P. C. Hohenberg, Rev. Mod. PI8&.851  [25] Y. Pomeau and P. Manneville, Phys. L&teA, 296 (1980.
(1993. [26] In general,Ak can be defined to be the distance betw&en
[7] P. K. Jakobsen, J. V. Maloney, and A. C. Newell, Phys. Rev. values for whiché(1) is a factorF (>1) of the minimum.
A 45, 8129(1992. Properties studied in the paper, such as the decay rates, are
[8] M. Bestehorn, Phys. Rev. &3, 3622(1993. independent of.

[9] M. Golubitsky, I. Stewart, and D. G. Schaeff@ingularites  [27] Y. Tu and M. C. Cross, Phys. Rev. Left5, 2152(1995.
and Groups in Bifurcation TheorySpringer-Verlag, New [28] R. E. Jones, Ph. D. thesis, University of Houst@897); R. E.

York, 1988, Vol. 2. Jones and G. H. Gunaratne, J. Stat. PB%s.427 (1998.
[10] K. R. Elder, J. Virals, and M. Grant, Phys. Rev. #6, 7618  [29] J. Swift and P. C. Hohenberg, Phys. Rev1B, 319 (1977.
(1990. [30] P. Gray and S. K. Scott, Chem. Eng. S88, 29 (1983; J.
[11] Q. Ouyang and H. L. Swinney, Chats411(1991). Phys. Chem89, 22 (1985.
[12] M. C. Cross and D. I. Meiron, Phys. Rev. Left5 2152 [31] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
(1995. tering, Numerical Recipes- The Art of Scientific Computing
[13] J. J. Christensen and A. J. Bray, Phys. Re®8E5364(1998. (Cambridge University Press, Cambridge, 1988
[14] Q. Hou, S. Sasa, and N. Goldenfeld, Physica239 219  [32] The disorder function is not intensive for patterns with global
(1999. regularity, such as a single target pattern or a single domain
[15] G. H. Gunaratne, R. E. Jones, Q. Ouyang, and H. L. Swinney,  wall.
Phys. Rev. Lett75, 3281(1995. [33] The behavior during the entire first stage can be approximated
[16] G. H. Gunaratne, D. K. Hoffman, and D. J. Kouri, Phys. Rev. by 8(B,t)=1/(a+b In(t)+ct¥?), for fixed a, b, andc.
E 57, 5146(1998. [34] A. D. Rutenberg and A. J. Bray, Phys. ReVv5E 5499(1995.

[17] A. Kudrolli, B. Pier, and J. P. Gollub, Physica D23 99 [35] K. Kawasaki, Phys. Rev. 81, 3880(1985.
(1998. [36] R. Loft and T. A. DeGrand, Phys. Rev. 35, 8528(1987.



